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Abstract  

We show that ff certain Poincar6-1ike integrals are conserved, then to each configuration 
coordinate of a system an entity can be associated that is an acceptable generalization of 
the notion of canonical momentum: In the particular case of standard mechanics, the 
canonical momenta are retrieved. Under certain general restrictions, the Poincar6 momenta 
make sense for either mechanical or general systems for which we do not have (or are not 
aware of) entities (like the Lagrangian) that are generally used to define the momentum. 
The Poincar6 momentum may also make sense for systems whose characteristics are 
difficult, or impossible, to reconcile with the notion 6f the usual canonical momentum. 
It is also relevant for certain cases where a Lagrangian exists, but it leads to a mixture of 
physical and unphysical entities. In particular, we show that while physical canonical 
momenta do not generally exist in the new Nambu mechanics (because of the dimension- 
ality of state vector space), the Poincar6 momenta exist, they are physical, and have the 
properties we could have expected for the mechanics. 

1. Statement  o f  the Problem 

The phase space o f  standard analytical mechanics has even dimension. If 
physical systems exist whose phase-space dimension is odd, they cannot be 
properly formulated (or perhaps even conceived) without the extension o f  
mechanics to odd dimension. Nambu (1973) showed a possible way of  doing 
this extension by creating a new mechanics (referred to in what follows as 
Nambu mechanics) whose principles and main properties allowed for odd as 
welt as even dimension (see also Ruggeri, 1975; Cohen and Kfilnay 1975; 
Garcfa-Sucre and K~lnay, 1975; K~lnay, 1974). Bunge 1 has pointed out that 
because the Nambu formalism does not necessarily refer to mechanical 
systems, it therefore is a theory o f  general systems even though formulated 
in the language of  mechanics. We shall use the term Nambu theory for the 

t M. Bunge, private communication. 
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Nambu theory of  general systems and N a m b u  mechanics for purely mechanical 
systems. 

In the Nambu theory it is not a priori clear which are the canonical momenta 
conjugated to the coordinates. Notice that the standard notion o f  canonical 
momenta 

pa = OL/Oglc~ (1.1) 

forbids odd-dimensional phase space. 2 The purpose of  this paper is to try to 
locate what canonical momenta are in Nambu theory. There existence is also 
studied. Our procedure is the following: We shall associate to each coordinate 
(or set of  coordinates) in Nambu theory a dynamical variable (or a set o f  
dynamical variables), which we shall call the Poincard momenta conjugated to 
the former coordinates. (We use the word "Poincard" as a reminder that we 
obtain the new definition from Poincard-like invariant integrals.) We then 
prove that in the particular case of  standard Hamiltonian dynamics the Poincard 
momentum conjugated to a given configuration-space coordinate coincides 
with the standard canonical momentum. The new Poincard momenta can then 
be properly considered as a generalization of  the standard momenta. Finally 
we shall show that the Poincard momenta make sense in Nambu theory and, 
moreover, that there consideration as momenta is consistent with other 
properties o f  the Nambu formalism. 

The Nambu theory for one multiplet (xl, x2 . . . . .  Xn) corresponds to the 
Hamilton formalism for a system with only one configuration variable q and 
its canonically conjugated momentum p (see, e.g., Cohen and K~itnay, 1975, 
Section 1). In order to have the Nambu analog of  Hamiltonian systems with 
an arbitrary number o f  configuration-space coordinates, Nambu systems with 
an arbitrary number of  multiplets must be considered in the sense of  equation 
(6) of  Nambu (1973). In order to fix the notation, we shall write the main 
formulas o f  Nambu systems with an arbitrary number of  multiplets in such a 
form that the comparison with the Hamilton formalism becomes transparent. 
Let n be the dimensionality and/ l  the number o f  the Nambu muttiplets,/.t = 
I, 2 . . . . .  We call 

x~, a = 1,2,  . . . , / l  (1.2a) 

any of  the Nambu multiplets 

df 
XO~ = ( X e ~ l ,  X ~ 2 ,  - • . ,  X o t i  . . . . .  , Xo~n), i = 1 , 2 , . . . ,  n (1.2b) 

In the Nambu formalism [in the sense of  equation (6) of  Nambu (1973)] there 
are n - 1 Hamiltonians 

H1, H2 . . . . .  Hn - I (1 .3 )  

In spite of this the coordinates xai of Nambu theory are correctly called phase-space 
coordinates because all of them span the state vector space of the c-number form of 
the Nambu theory. Further discussion is given in Section 4.1. 
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and given a dynamical variable F(x  1, x2 . . . . .  x ~ , . . . ,  xu) the Nambu equation 
of  motion is 

p 
F = . E  O(F'Ht--'-'-L'-ttn--1)- (1.4) 

~= 1 ~ (x~l, x~2 . . . . .  x~. )  

where 3 ( . . .  ) / 3 ( . . .  ) is a Jacobian. By introducing the Narnbu bracket 3 (or 
generalized Poisson brackets in the terminology of  Nambu, 1973) 

# 
df ~ 3 (El, f 2 . . . .  ,Fn)  

{F~,F2 . . . . .  Fn} . . . . . / _ ~  (1.5) 

among the dynamical variables F a, F2, • •., Fn equation (1.4) can be rewritten 
as 

t 5= (F, H1 . . . .  ,Hn-1}  (1.6) 

The phase-space coordinates in Nambu theory are the Xc~r; they are such that 

(x~bxc~2 . . . . .  x ~ }  = 1, e = 1 ,2  . . . .  , / t  ( l .7a) 

{X~l i l  , Xc~2i 2 . . . . .  Xan in } = 0 if at least ] 
two of  the ar are different and/or if at least ~ (i .7b) 
two of  the ir are equal ) 

Let us now consider a standard Hamiltonian system whose configuration- 
space coordinates are 

ql, q2 . . . . .  qc,, • •., qu (1.8a) 

and let 

pl,  p2, . . . ,  p ~ , . . . ,  pU 
(1.8b) 

be the corresponding canonically conjugated momenta. The single Hamiltonian 
H generates the time evolution according to 

F(q, P) = 
u [3F(q ,p)  3H(q,p)  OF(q,p) 3H(q,p)]  

c~=l 
(1.9) 

The Poisson bracket is 

{El, F2) 
~=1 ~ '  3(q~'PC~) 

(1.10) 

3 These brackets (also called Poisson brackets of the nth order) were previously used in a 
different context. See the result by Albeggiani in Example 5 (p. 337) of paragraph 153 
(Whittaker, 1937). We are indebted to F. Marfn (private communication) for letting us 
know of Albeggiani's result. 
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so that for any dynamical variable F(q ,  p)  

/~ = {F, H} (1.11) 

The phase-space coordinates qa, p a  are such that 

{qa, pC,} = 1 (1.12a) 

{q~x,p'~2} = 0 i f a l  =~a2 
(1.12b) 

{qeq, qce2 } = {pCq, pOe=} = 0 ,  VOel, a 2 

[The complicated form of stating equations (1.1 2b) was used to make easier 
the comparison with equation (1.7b).] If we call in the Hamiltonian formalism 

df df df 
xea = q~, xa2 = p c', Xc~ = (qc,, pa) ,  a = l , 2  . . . . .  /1 

(1.13) 

then the Hamiltonian dynamics coincide with the Nambu dynamics for a Nambu 
system of  doublets (n = 2). In fact, equations (1.8)-(1.13), respectively, go to 
equations (1.2) and (1.4)-(1.7). Moreover, the Nambu bracket is totally anti- 
symmetric, as is the Poisson bracket. Notice that equation (1.1 2a) corresponds 
to (1.7a) and (1.12b) to (1.7b), etc. 

The Nambu formalism is thus a proper generalization of  the Hamilton 
formalism. 

2. Poincard Momenta ,  General Case 

Here we shall consider a general theory of systems, in particular a general 
mechanics, without restriction to any particular case like the Nambu or 
Hamilton ones. Our only assumptions will be the following: (1) To consider 
c-number systems. (ii) That a linear state vector space (which we call g )  exists. 
(It is not essential that it be finite dimensional, but we shall consider it to be 
so for definiteness.) Call S the dimension. (iii) That integral constants of motion 
like that of  equation (2.11) (see below) exist. 

Let p and n be two positive integers such that 

, n  = S (2.1) 

The entities to be defined below depend on the selection o f p  and n, so that 
from now on we consider the selected values p and n as fixed. There are S 
coordinates in N, which because of equation (2.1) can be labeled with two 
indices. We write them as before 

x~i,  a = 1,2 . . . . .  p, i = 1 , 2 , . . . ,  n (2.2) 

Defini t ion 2.1. An n-plet is any of the sets 

df 
xa = (xal, xa2 . . . . .  x~i , .  •., x~) ,  a = 1 , 2 , . . . ,  g (2.3) 
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/~ being the number of  the n-plets. We call x any vector of  g.  Then we have 

x = (xl,  x 2 , . . . ,  x ~ , . . . ,  xu). (2.4) 

Definition 2.2. Let s be an integer such that 

1 ~< s < n (2.5) 

Let us consider a set 
d f  

q~ = (q~l, q~2, • •., qc~r,.. . ,  qc~s) (2.6) 

of  a complex (or real) valued independent functions 

q,~,:x~q~,r(x)~C (orB) 
r = 1, 2 , . . . ,  s, a = 1, 2 , . . . , / a  (2.7a) 

We also denote 

d f  
q = (qa, q2 . . . . .  q~, • • -, qu) (2.7b) 

An s coordinate of  configuration space is any of  the sets qc,. 

Definition 2.3. A configuration space coordinate qa - q~l is a 1 -coordinate. 

Definition 2.4. Let us consider (if it exists) a set 

d f  
f~  = ( f l  =, fff ,  • •., fv c~ . . . . .  f f f -  s) (2.8) 

o f n  - s complex (or, respectively, real) valued independent functions 

fv~: x -+f~(x)  ~ C (or R)  (2.9) 

v= l , 2 , . . . , n -  s, c~= 1 , 2 , . . . , g  

such that, for a fixed s and for any cx there would be 

d~nS(°) - 0 (2.10) 
dt 

where o is an arbitrary n-dimensional surface belonging to g and where 

df  /.L 
JnS(a) = ~ fdqcd  . . . . . . . .  "dqar " 'dqo~dfl  ce" dry c~ dfn-s~ (2.11) 

& = l  o 

We also denote 

df  
f = ( f l ,  f 2 , . .  -, f ~ , . .  -, fu )  (2.12) 

Then, whenever f exists, an (n - sj-Poinear~ momen tum conjugated to the 
s coordinate q~ is the set f %  

Definition 2.5. A Poincar~ momentum f a --=fl a canonically coniugated to 
the coordinate qa is an 1-Poincar6 momentum conjugated to qa. 
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3. The PoincarO Momentum is the Canonieal Momentum for Standard Systems 

Let us consider a standard Hamiltonian system so that equations (I  .8)- 
(1.12) hold; or, let us start from a standard Lagrangian system so that the usual 
canonical momenta (always denoted p'~) are defined by equation (1.1). We 
shall prove that for such systems the Poincar6 momentum (always denoted f~)  
coincides with pC~. We shall work within the Hamilton formalism. Because of 
equation (1.8) we have that in equation (2.1) S = 2p, so that 

n = 2 ( 3 . 1 )  

The 2-plets (Definition 2.1) can always be taken as 

x~ = (q~, p c~), c~ = 1 , 2 , . . . ,  p (3.2) 

BecauSe of Definition 2.3 the standard configuration-space coordinates coincide 
with the 1-coordinates, so that the usual configuration-space coordinates of the 
Hamiltonian formalism coincide with the configuration-space coordinates q~ 
introduced in Definition 2.3. Then, in order to compare the formalism of 
Section 2 with the standard one we must select 

s = 1 (3.3) 

in equation (2.5). Notice that because of equation (3.2) we have 

f~(x) = f~(q,p) (3.4) 

Finally, we remark that we call H the usual Hamiltonian, which satisfies equa- 
tion (1.9). 

Theorem 3.1. The canonical momenta p~ are also Poincar$ momenta 
conjugated to the same q~. 

Proof. Put f~= p ~ in Definition 2.4. Then from the theory of Poincar6- 
invariant integrals it follows immediately that p~ is an 1-Poincar6 momentum 
conjugated to q~ so that because of Definition 2.5, the proof is ended. [] 

Theorem 3.2. Let f~(q, p), a = I ,  2 , . . . ,  p a set of  Poincar6 momenta 
respectively conjugated to the q~. Then H*(q, p) exists such that 

and 

3H* 
4c~ af,~ (3.5a) 

~H 
s~ e = (3.5b) 

0qe 

Proof. Being the f a  Poincar4 momenta, Definitions 2.4 and 2.5 imply that 

P 

: f f dqo af (3.6) 
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is conserved in time. Because of equations (3.4) and (1.9) the set (q(t), f(t)) is 
the solution of first-order equations. The conservation of the absolute invariant 
(3.6) implies that of the relative invariant 

Lt 

E ~fadq~ 
O~=1 

(Section 114, p. 271 of Whittaker, 1937), so that a function H* exists such that 
equations (3.5) are satisfied (Section 116, p. 274 of Whittaker, 1937). [] 

Theorem 3.3. The transformation 

(q~, p ~, H) -+ (qe, f~, H*) (3.7) 

is canonical. 4 

Proof From equations (3.6) and (2.10) it results that 

fadqc~ (3.8) 
O~=1 

is a relative integral invariant; therefore as a result of the theorem by Lee Hwa- 
Chung (1947) (also Gantmacher, 1970, Section 22), the integral (3.8) is 
proportional to that obtained by replacing in (3.8)fc~ by pe. Then, 

# 

(fc, _ cp w) dqa = 0 (3.9) Y~ 
0~=1 

where c is a constant, so that 

df ~ 
dF= ~ [(fC~-cpa)dq~+O.dp~] 

0~=1 

is an exact differential. This implies that F exists such that 

OF 
= 0  0p ~ 

and 

f~(q, P) = CP c~ + OF(q) 
Oq~ 

Now we can compute the Poisson brackets: 

{q~, @} = 0 

{q~, f ~ )  = c ~  

{fa, fp} = 0, V&,/3 

(3.10) 

(3.i la) 

(3.1tb) 

(3.12a) 

(3.12b) 

(3.12c) 

a As regards canonicity, the terminology is not uniform. We adhere to that of Currie and 
Saletan (1972) and Saletan and Cromer (1971). 
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This is a necessary and sufficient condition for (3.7) to be canonical (Currie 
and Saletan, 1972; Saletan and Cromer, 1971, Section 6.3; Gantmacher, 1970, 
Section 32; Sudarshan and Mukunda, 1974, Chap. V). We stress that the nomen- 
clature we use is that of Currie, Saletan, and Cromer. [] 

Note 3.4. It is not necessary for the transformation to be restricted canoni- 
cally (Saletan and Cromer, 1971), or "univalent canonical" in Gantmacher's 
language, since'c :/= 1 is possible, as shown by the example f a  = cp a, Vc ¢ 0. 

Note 3.5. Canonoid transformations are those that preserve the Hamilton 
formalism for at least one given dynamical system (i.e., for at least the given H), 
while the canonical transformations are transformations that are canonoid for 
any H consistent with the given phase space. (Currie and Saletan, 1972; Saletan 
and Cromer, 1971 .) It is clear that in order to preserve the physics of a given 
classical Hamiltonian system, it is enough that the transformation be canonoid; 
it is even better if it is canonical, but that is not physically essential. With this 
introduction, we remark that if instead of canonicity we had asked the trans- 
formation (3.7) to be canonoid, our result would have been a direct consequence 
of Theorem 3.2, without having to resort to the involved proof needed to show 
canonicity. 

Note 3.6. The factor c in equations (3.12) can be reabsorbed into f a  resulting 
in a scale (if c > 0) [or reflection and scale (if c < 0)] transformation (cf. the 
end of the proof of  Theorem 3.3). 

Corollary 3.7. The transformation (3.7) is (up to a scale and/or reflec- 
tion transformation) a gauge transformation. 

Proof. (We use the term gauge transformation in analytical mechanics in the 
sense of IAvy-Lebtond, 1969.) Let us add to the Lagrangian a total time deriva- 
tive [;(q)/c, where c 4:0 is a constant. Then the canonical momenta change as 

~F 
pa _~pa +c-1 _ _  

which differs from (3.7) by a scale and/or reflection factor c, as shown by 
equation (3.12b). [] 

Remark 3.8. Because of Theorem 3.3, the Poincar~ momenta f ~  are also 
canonical momenta for the case of Hamiltonian or Lagrangian systems. (If 
canonicity is intended in the "restricted" sense, this is true up to a scale and/or 
reflection transformation of momenta.) Because of this, we can state that the 
notion o f  PoinearO momenta is (when those momenta exist) a valid generaliza- 
tion o f  that o f  the standard momenta for those formalisms (such as the Nambu 
one) for which canonical momenta cannot be introduced in the usual way. 
Since the (n - s)-Poincar6 momenta are a generalization of the Poincar~ 
momenta (Definitions 2.4 and 2.5), the same can be stated ¢br the (n - s)- 
Poincard momenta. 
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Note  3.9. I f p  a is the canonical momentum conjugated to qa, then it is 
known that in the "restricted" canonical sense -qc` is the momentum conju- 
gated to pC,. On the other hand, i f f  ~ is the Poincar~ momentum conjugated to 
q~, it results from Definition 2.5 that +q~ is a Poincar~ momentum conjugated 
to f~. Thus, there is a sign difference; however, there is no contradiction with 
Remark 3.8 because c can equal -1  (reflection). 

Remark  3.10. We began this section restricted to standard Hamiltonian 
systems. Here the word "standard" is used to exclude generalized classical 
Hamiltonian mechanics like that of Dirac (1950, 1951, 1958, 1964), for which 
the results of the present section do not necessarily apply. Let us illustrate 
the kind of difficulties that can be found with an example concerning Dirac's 
mechanics, which is the correct one for phase-space-constrained systems. We 
choose as the example the following: let the Lagrangian be 

L = ½C~l 2 + q2cl2 

Then ql is a linear function of time while qz is an arbitrary one. The momenta 
are Pl = dql /d t ,  P2 = q2. Clearly ql, Pl are physical variables, and q2, P2 are 
physically irrelevant. The LiouviUe theorem holds in the physical phase space 
of coordinates ql, Pl. However, this is not the case in the conceptually relevant 
academic whole phase space of coordinates ql, q2, Pl, P2: 

is an undeterminated expression so that Liouville theorem does not hold. In 
consequence, J21 [equation (3.6)] is not a conserved invariant integral for the 
whole phase space, although it is for the physical phase space. Therefore, we 
cannot use Definitions 2.4 and 2.5 to introduce the Poincar~ momenta. This 
drawback of the Poincar~ momenta is shared by the canonical momenta too; 
In fact, P2 can be formally defined as the generator of translations in the q2 
variable. 5 But, (i) such translations are unphysical because they refer to the 
unphysical variable q2 and (ii) they violate the constraint P2 = q2. I f  the un- 
physical variables are dropped altogether, then the system is a standard 
Hamiltonian. The previous theorems hold, and both the Poincar~ and the 
canonical momentum exist and coincide. Let us stress that we offered this 
physically uninteresting particular case as an illustration of the difficulties of 
nonstandard systems. We do not pretend, however, that the behaviour of  that 
system is a typical one for physically relevant systems. We consider that the 
momentum problem for phase-space constrained systems deserves further 
consideration. 

s For canonical (and generalized) transformation in phase-space constrained systems see 
Bergmann and Goldberg (1955), Bergmann et aL (1956), and Sudarshan and Mukunda 
(1974). 



644 KALNAY AND TASODN 

4. Nambu Theory 

In the Nambu formalism there seems to be no place for a standard-type 
definition of canonical momenta (Section 1). In contrast, we shall show that the 
Poincar6 momenta are well defined and give a reasonable result, taking into 
account the features of Nambu theory. But let us first briefly discuss the 
standard approach. 

4.1. Lagrangians. Here we summarize some results given in K~lnay and 
Tascdn (1976). In the present subsection, we shall restrict ourselves to odd- 
dimensional Nambu theory. Since the state vector variables are those whose. 
values for all future times are uniquely determined in terms of the initial values, 
then it is clear from equation (1.4) that the Nambu state vector variables are 
any of the Nambu phase-space coordinates xca. However, in Hamiltonian 
dynamics the state vector space is the phase space. Therefore, if unphysical 
auxiliary variables are not introduced in Nambu and/or Hamilton formalisms, 
it results that the identification o f Nambu with Hamilton dynamics is impossible. 
This is because the dimensions of  the state vector spaces do not fit. [To intro- 
duce Dirac-like constraints (Dirac, 1950) does not help, as shown by Cohen 
and Kfilnay (1975).] Therefore, we do not have in Nambu theory a Lagrangian 
from which via equation (t .1) the momenta could be obtained. However, the 
Note "this result does not necessarily remain correct if the Nambu phase space 
is implemented with an additional number of  auxiliary variables" (which, 
titanks to a private communication by Professor Ruggeri, we included in Sec- 
tion 2 of Cohen and K~lnay, (1975) is relevant to the above discussion also. 
In fact, when Nambu coordinates are temporarily transformed in auxiliary 
variables or when they are implemented by auxiliary variables, Lagrangians 
can be introduced and equation (1.1) used in order to obtain in a familiar 
fashion the Nambu theory momenta. For example, the Lagrangian 

L(x, ~:) = Hl(x).i  • VH2(x) (4.1.1) 

(xi, i = 1,2, 3 being the configuration variables) proposed by Bayen and Flato 
(1976) for the Nambu triplet (tt = 1, n = 3) and also considered in Mukunda 
and Sudarshan (1975) leads to a Hamiltonian embedding of the Nambu equa- 
tion. Via equation (4.1 .I)  one can define momenta. This procedure is very 
interesting and has nothing wrong. However, as regards its use to introduce 
momenta in Nambu theory, the following two remarks are in order. 

(i) The auxiliary variables are not physical variables. They carry no 
physical data because they are not state vector variables. To specify them at a 
certain time, leave them completely unspecified in any future time. There- 
fore, at least one part of the phase-space formalism developed in that way 
deals with a mixture of  physical and unphysical entities. This contrast with 
the procedure we shall introduce in the next subsection. 

(ii) Those momenta are highly nonunique. In fact, other embeddings and 
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other Lagrangians than (4.1.1) are possible. We could obviously use, for 
example, the Lagrangian 

L'(Q, x, Q, x) = Q" {x - [VHl(x)l x [VH2(x)] } (4.1.2) 

(Here xi  and Qi, i = 1,2,  3 are the configuration variables.) Both Lagrangians 
lead to quite different momenta. 

4.2. The Momen tum f o r  Nambu 5"ystems. Let us consider a Nambu system 
with multiplets using the same notation as in equations (1.2)-(1.7). Then we 
prove the following theorem. 

Theorem 4.2.1. The integral 
/a 

Y. j dx~l dx~2 " • • dx~n (4.2.1) 
0~=1 0 

is conserved in time. 6 

Proof. Put F = x~i in equation (1.4) and compute 

• 3 x ~ i  St 

obtaining zero as the result. 

Note  4.2.2. Let us select s values o f i  = 1, 2 , . . . ,  n and call 

(If 
q~ = (xeiv  xei= . . . . .  Xuis), o~ = 1 ,2  . . . . .  U (4.2.2) 

Notice that the selected values of  s will be the same for each value of  c~. Because 
of  Definition 2.2, q~ is an s-coordinate o f  configuration space. Also each x~ik is 
a coordinate o f  configuration space (see Definition 2.3). From Theorem 4.2.1, 
Note 4.2.2, and Definition 2.4 we obtain the following corollary'. 

Corollary 4.2.3. The set of  all X~ik not included in the right-hand side 
of  equation (4.2.2), i.e., 

f ~  =(x~, 1,-. ~,x~,il - 1,x~,il +1 . . . . .  x~ , i s -  1, x~,is + l . . . . .  xe, in) (4.2.3) 

is an (n - s)-Poincar6 momentum conjugated to qa. 

In particular we have the following 

M A I N  RESUL TS 4.2.4. Each Nambu phase-space coordinate x~i , 
considered as a configuration coordinate, has Poincar~ conjugated an 
(n - 1)-Poinear& momentum,  which is the set 

fce  [ s = l  = (Xo~, 1 . . . . .  Xc~,i--1, Xa, i+1 . . . . .  X~ ,n )  (4.2.4) 

6 This theorem was first shown by Nambu (1973) for the case of one multiplet. 
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o f  all the other xak. Likewise, each Nambu phase-space coordinate 
xai can also be considered as a momentum coordinate (Definition 2.5) 
that is Poincar&conjugated to the (n - 1)-configuration-space co- 
ordinate by the right-hand side of equation (4.2.4). 

Remark 4.2.5. Equations (4.2.3) and (4.2.4) remain correct if we substitute 
Xaik -+ C i k X a i k  , where the cik are arbitrary nonzero constants. This transforma- 

- -  - -  c d -  

tion corresponds t o f  a = p -+fa = cp ~ in the Hamiltonian case (cf. Note 3.4). 

Remark 4.2.6. It may be at first surprising that the conjugate to a single 
coordinate is a set of n - 1 variables. But this is just what couM be expected 
from a basic fact o f  Nambu theory: 

In standard Hamiltonian theory, the time (changed sign) has as conjugate 
the Hamiltonian. In Nambu theory there are n - 1 Hamiltonians (1.3). There- 
fore, if Nambu theory shares the main formal properties of the Hamiltonian 
theory (as expected, see Section 1), then the number o f  variables whose set is 
the generalized momen tum conjugated to the time must  be just n - 1. There- 
fore, it is reasonable that the number of  variables whose set is the generalized 
momentum conjugated to an x~i also be n - 1. Moreover, the canonical 
momenta  of standard Hamiltonian theory are generators of translations. Here, 
we have the following theorem. 

Theorem 4.2.7, The generator of translations of a variable x~i in 
Nambu theory [and in the frame of the Nambu Bracket (1.5) formula- 

tion] is, up to a sign, the (n - 1)-Poincar6 momentum (4.2.4) conju- 
gated to x~i. 

Proof. We must show that 

~g/~xai=+{g,  x a i , . . . , X a ,  i_ l ,  Xa, i+ l , . . . ,Xa ,  n} ' ~lg (4.2.5) 
which directly follows from equation (1.5). 7 [] 

7 Instead of introducing the notion of Poincar~ momenta in order to have a generalization 
of momenta suitable for the Nambu case, a valid procedure could be applied to define 
the momenta as the generators of translations, i.e., considering 4.2.7 as a definition. 
However, in this stage of the research of the theory we have not done as just indicated, 
because (as we shall show immediately) this alternative definition would strongly depend 
on the rote of the different brackets in terms of which Nambu theory can be formulated. 
In fact, Nambu has shown an n-linear bracket (I .5) as a suitable one to state the theory 
in the bracket formalism. On the other hand, Ruggeri (1975) has shown that at least 
for the ** = 1 case, the Nambu theory can also be formulated in a bilinear bracket formal- 
ism, with a bracket of the form 

the matrix F being singular. In the bilinear bracket formulation of Nambu theory, a 
definition of momenta as generators of translations would, up to a nonzero constant 
(cf. Remark 4.2.5), require that 

~g  = ~ ,  s '~}p, Vg (m 
8 X c ~  
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Remark 4.2.8. The sign ambigui ty  is irrelevant,  because o f  the  arbitrariness o f  

sign o f  the constants  cik ment ioned  in Remark  4.2.5.  These sign ambiguit ies  also 
arise in the  Hamit tonian case, because o f  the  arbitrariness o f  sign in the  constant  
c men t ioned  in Note  3A.  
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(B) implies, up to a nonzero constant, that 
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momenta, which would be independent of the brackets to be used. 
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